Modified Shephard’s Problem on Projections of Convex Bodies

نویسنده

  • VLADYSLAV YASKIN
چکیده

We disprove a conjecture of A. Koldobsky asking whether it is enough to compare (n−2)-derivatives of the projection functions of two symmetric convex bodies in the Shephard problem in order to get a positive answer in all dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projections of Convex Bodies and the Fourier Transform

Abstract. The Fourier analytic approach to sections of convex bodies has recently been developed and has led to several results, including a complete analytic solution to the BusemannPetty problem, characterizations of intersection bodies, extremal sections of lp-balls. In this article, we extend this approach to projections of convex bodies and show that the projection counterparts of the resu...

متن کامل

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

The Fourier Transform and Firey Projections of Convex Bodies

In [F] Firey extended the notion of the Minkowski sum, and introduced, for each real p, a new linear combination of convex bodies, that he called p-sums. Lutwak [Lu2], [Lu3] showed that these Firey sums lead to a Brunn-Minkowski theory for each p ≥ 1. He introduced the notions of p-mixed volume, p-surface area measure, and proved an integral representation and inequalities for p-mixed volumes, ...

متن کامل

Fourier Transform and Firey Projections of Convex Bodies

In [F] Firey extended the notion of the Minkowski sum, and introduced, for each real p, a new linear combination of convex bodies, what he called p-sums. E. Lutwak [Lu2], [Lu3] showed that these Firey sums lead to a Brunn-Minkowski theory for each p ≥ 1. He introduced the notions of p-mixed volume, p-surface area measure, and proved an integral representation and inequalities for p−mixed volume...

متن کامل

Valuations and Busemann–Petty Type Problems

Projection and intersection bodies define continuous and GL(n) contravariant valuations. They played a critical role in the solution of the Shephard problem for projections of convex bodies and its dual version for sections, the Busemann– Petty problem. We consider the question whether ΦK ⊆ ΦL implies V (K) ≤ V (L), where Φ is a homogeneous, continuous operator on convex or star bodies which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007